Dispersive estimates for higher dimensional Schrödinger operators with threshold eigenvalues. II. The even dimensional case

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispersive Estimates for Higher Dimensional Schrödinger Operators with Threshold Eigenvalues Ii: the Even Dimensional Case

We investigate L(R) → L∞(Rn) dispersive estimates for the Schrödinger operator H = −∆ + V when there is an eigenvalue at zero energy in even dimensions n ≥ 6. In particular, we show that if there is an eigenvalue at zero energy then there is a time dependent, rank one operator Ft satisfying ‖Ft‖L1→L∞ . |t|2− n 2 for |t| > 1 such that ‖ePac − Ft‖L1→L∞ . |t| 1−n 2 , for |t| > 1. With stronger dec...

متن کامل

Dispersive Estimates for Higher Dimensional Schrödinger Operators with Threshold Eigenvalues I: the Odd Dimensional Case

We investigate L(R) → L∞(Rn) dispersive estimates for the Schrödinger operator H = −∆ + V when there is an eigenvalue at zero energy and n ≥ 5 is odd. In particular, we show that if there is an eigenvalue at zero energy then there is a time dependent, rank one operator Ft satisfying ‖Ft‖L1→L∞ . |t|2− n 2 for |t| > 1 such that ‖ePac − Ft‖L1→L∞ . |t| 1−n 2 , for |t| > 1. With stronger decay condi...

متن کامل

0 M ay 2 00 6 The L p boundedness of wave operators for Schrödinger operators with threshold singularities II . Even dimensional case

Let H = −∆ + V (x) be a Schrödinger operator on R, m ≥ 1, with real potential V (x) such that |V (x)| ≤ C〈x〉, 〈x〉 = (1+ |x|2) 1 2 , for some δ > 2. Then, H with domain D(H) = H(R), the Sobolev space of order 2, is selfadjoint in the Hilbert space H = L(R) and C 0 (R) is a core. The spectrum σ(H) ofH consists of absolutely continuous part [0,∞) and a finite number of non-positive eigenvalues {λj...

متن کامل

A Dispersive Bound for Three-dimensional Schrödinger Operators with Zero Energy Eigenvalues

We prove a dispersive estimate for the evolution of Schrödinger operators H = −∆ + V (x) in R3. The potential is allowed to be a complex-valued function belonging to Lp(R3) ∩ Lq(R3), p < 3 2 < q, so that H need not be self-adjoint or even symmetric. Some additional spectral conditions are imposed, namely that no resonances of H exist anywhere within the interval [0,∞) and that eigenfunctions at...

متن کامل

Higher Dimensional Enriques Varieties with Even Index

Let Y be an Enriques variety of complex dimension 2n − 2 with n ≥ 2. Assume that n = 2m for odd prime m. In this paper we show that Y is the quotient of a product of a Calabi-Yau manifold of dimension 2m and an irreducible holomorphic symplectic manifold of dimension 2m − 2 by an automorphism of order n acting freely. We also show that both Y and its universal cover are always projective.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Spectral Theory

سال: 2017

ISSN: 1664-039X

DOI: 10.4171/jst/155